Almost all Regular Graphs are Hamiltonian
نویسنده
چکیده
In a previous paper the authors showed that almost all labelled cubic graphs are hamiltonian. In the present paper, this result is used to show that almost all r-regular graphs are hamiltonian for any fixed r ≥ 3, by an analysis of the distribution of 1-factors in random regular graphs. Moreover, almost all such graphs are r-edge-colourable if they have an even number of vertices. Similarly, almost all r-regular bipartite graphs are hamiltonian and r-edge-colourable for fixed r ≥ 3. ∗Research supported by the Australian Research Council
منابع مشابه
On cycles in intersection graphs of rings
Let $R$ be a commutative ring with non-zero identity. We describe all $C_3$- and $C_4$-free intersection graph of non-trivial ideals of $R$ as well as $C_n$-free intersection graph when $R$ is a reduced ring. Also, we shall describe all complete, regular and $n$-claw-free intersection graphs. Finally, we shall prove that almost all Artin rings $R$ have Hamiltonian intersection graphs. ...
متن کاملOn random regular graphs with non-constant degree
We study random r-regular labelled graphs with n vertices. For r = 0(n ) we give the asymptotic number of them and show that they are almost all r-connected and hamiltonian. Proofs are based on the analysis of a simple algorithm for finding "almost" random regular graphs. (Diversity Libraries §
متن کاملA conjecture on the prevalence of cubic bridge graphs
Almost all d-regular graphs are Hamiltonian, for d ≥ 3 [8]. In this note we conjecture that in a similar, yet somewhat different, sense almost all cubic non-Hamiltonian graphs are bridge graphs, and present supporting empirical results for this prevalence of the latter among all connected cubic non-Hamiltonian graphs.
متن کاملHamilton cycles containing randomly selected edges in random regular graphs
In previous papers the authors showed that almost all d-regular graphs for d ≥ 3 are hamiltonian. In the present paper this result is generalized so that a set of j oriented root edges have been randomly specified for the cycle to contain. The Hamilton cycle must be orientable to agree with all of the orientations on the j root edges. It is shown that the requisite Hamilton cycle almost surely ...
متن کامل3-star Factors in Random D-regular Graphs
The small subgraph conditioning method first appeared when Robinson and the second author showed the almost sure hamiltonicity of random d-regular graphs. Since then it has been used to study the almost sure existence of, and the asymptotic distribution of, regular spanning subgraphs of various types in random d-regular graphs and hypergraphs. In this paper, we use the method to prove the almos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Random Struct. Algorithms
دوره 5 شماره
صفحات -
تاریخ انتشار 1983